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1. Introduction

Integro-differential equations are very important in the study of
many phenomena in physics, mechanics, medical, finance,
sociology, biology, etc.

Volterra integro-differential equation was originated from
predator-prey equations (Lotka-Volterra system)

dN1 = ε1N1dt − γ1N1N2dt

dN2 = ε2N2dt − γ2N1N2dt

where εi > 0 and γi > 0.
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1. Introduction

These equations could be transformed to the following
2-dimensional integro-differential equation.

X′ = AX +

∫ t

0
C(t − s)X(s)ds + Γ(t)
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1. Introduction

This equation can be generalized to the following deterministic
nonlinear Volterra integro-differential equation

x′(t) = f
(

t, x(t),
∫ t

0
G(t − s)x(s)ds

)
(1)
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1. Introduction

In 2014, P. Hu and C. Huang published a paper
[The stochastic θ-method for nonlinear stochastic Volterra
integro-differential equations, Abstract and Applied Analysis,
ID 583930, 13 pages].

They considered the following stochastic Volterra
integro-differential equation with convolution kernels

dx(t) = f
(

x(t),
∫ t

0
G(t − s)x(s)ds

)
dt

+ g
(

x(t),
∫ t

0
H(t − s)x(s)ds

)
dW(t), x(0) = x0

(2)
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1. Introduction

The authors considered in this paper the mean square exponential
stability of the exact solution to the above stochastic Volterra
integro-differentia equation under some given conditions, moreover,
mean square convergence and mean square stability of the
corresponding stochastic θ-method are also investigated.

We will only consider in this talk the mean square stability of both
the exact solution and the corresponding stochastic θ-method, and
we improved the conclusion of Hu and Huang. Roughly speaking,
we will obtain stronger results under weaker conditions (compared
with Hu and Huang).
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2. Framework

Consider the following stochastic Volterra integro-differential
equation

dx(t) = f
(

x(t),
∫ t

0
G(t − s)x(s)ds

)
dt

+ g
(

x(t),
∫ t

0
H(t − s)x(s)ds

)
dW(t), x(0) = x0

(3)

Suppose f(0, 0) = 0, g(0, 0) = 0, which implies that X ≡ 0 is the
trivial solution of the above equation.
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2. Framework

The corresponding θ-EM method (stochastic θ-method) of
stochastic Volterra integro-differential equation is defined as the
following.

Xn+1 := Xn + h[θf(Xn+1,Zn+1) + (1− θ)f(Xn,Zn)]

+ g(Xn, Z̄n)∆Wn
(4)

where θ ∈ [0, 1], h is the stepsize, ∆Wn = W((n + 1)h)− W(h) is
the increment of Brownian motion W.

Zn := h
n−1∑
j=0

G((n − j)h)xj, Z̄n := h
n−1∑
j=0

G((n − j)h)xj
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2. Framework

Mean square exponential stability:
We say the solution to equation (3) is mean square exponentially
stable if there exists λ > 0 such that

lim sup
t→∞

logE|x(t)|2
t ≤ −λ.

Similarly, we say the θ-EM method (4) is mean square
exponentially stable if there exists λ > 0 such that

lim sup
k→∞

logE|Xk|2

kh ≤ −λ.
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2. Framework

Almost sure exponential stability:
If

lim sup
t→∞

log |x(t)|2
t ≤ −λ, a.s.

or
lim sup

k→∞

log |Xk|2

kh ≤ −λ, a.s.,

we say the solution to equation (3) or (4) almost sure
exponentially stable, respectively.
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3. Known results

Suppose there exist six positive constants λi, i = 1, ..., 4, β and γ
such that

2xTf(x, 0) ≤ −λ1|x|2, (5)

|f(x, y)− f(x, 0)| ≤ λ2|y|, (6)

|g(x, y)|2 ≤ λ3|x|2 + λ4|y|2 (7)

for all x, y ∈ Rd, and

|G(t)| ∨ |H(t)| ≤ βe−γt, t ≥ 0. (8)
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3. Known results

Theorem 1 Assume that conditions (5)-(8) hold. If

−λ1 + λ2 + λ3 + (λ2 + λ4)
β2

γ2
< 0, (9)

then for any given initial data x0, there exists a pair of positive
constants ρ and C such that

E|x(t)|2 ≤ CE|x0|2e−ρt, ∀t ≥ 0,

i.e. the exact solution of (3) is mean square exponentially stable.
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3. Known results

Theorem 2 Under conditions (5)-(8), if 1
2 ≤ θ ≤ 1, then the

stochastic θ method (4) is mean square asymptotically stable for
any stepsize h > 0 (i.e. limn→∞ E|Xn|2 = 0 for any initial x0).
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4. Our results

4.1 Mean square exponential stability of the exact solution

Consider the following local Lipschitz condition: For any R > 0
and |x| ∨ |x′| ∨ |y| ∨ |y′| ≤ R, there exists LR > 0 such that

|f(x, y)− f(x′, y′)|∨ |g(x, y)−g(x′, y′)| ≤ LR(|x−x′|+ |y−y′|), (10)

exponential decay condition: There exist β > 0 and γ > 0 such
that

|G(t)| ∨ |H(t)| ≤ βe−γt (11)

and Khasminskii-type condition

2⟨x, f(x, y)⟩+ |g(x, z)|2 ≤ −C1|x|2 + C2|y|2 + C3|z|2, (12)

where Ci, i = 1, 2, 3 are positive constants.
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4. Our results

Theorem 3
Assume (10), (11) and (12) hold. If C1 >

β2

γ2 (C2 + C3), then there
exist a unique global solution to equation (3). Moreover, exact
solution is mean square exponentially stable and almost surely
exponentially stable.
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4. Our results

4.2 Mean square exponential stability of the θ-EM method

To make sure the θ-EM method is well defined, we need the
following one-sided Lipschitz conditon of f, i.e. There exists L > 0
such that

⟨x1 − x2, f(x1, y)− f(x2, y)⟩ ≤ L|x1 − x2|2, ∀x1, x2, y ∈ Rd (13)

Theorem 4 Suppose all conditions in Theorem 3 hold with
C1 >

β2

γ2 (C2 + C3). If the one-sided Lipschitz condition (13) also
holds, then the θ-EM method (4) is mean square exponentially
stable for θ ∈ (12 , 1], and therefore, it is almost surely exponentially
stable .
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Comparison of the results

We obtain mean square exponential stability of the θ-EM method
(4) in Theorem 4, while Hu and Huang only prove the mean square
asymptotic stability in Theorem 2.

Moreover, our conditions is weaker than those of Hu and Huang.
Indeed, conditions (5)-(7) imply condition (12). On the other
hand, we don’t need the linearity of g.
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Sketch of the proof of Theorem 3

1. Using Itô’s formula to eλt|x(t)|2;
2. Using the fact that∣∣∣∣∫ s

0
G(s − r)x(r)dr

∣∣∣∣2∨∣∣∣∣∫ s

0
H(s − r)x(r)dr

∣∣∣∣2 ≤ β2

γ2

∫ s

0
e−γ(s−r)|x(r)|2dr

3. Choosing λ < γ. Then

eλtE|x(t)|2 ≤ E|x0|2+
[
(λ− C1) +

β2

γ(γ − λ)
(C2 + C3)

] ∫ t

0
eλsE|x(s)|2ds
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4. Mean square exponential stability is a direct result by choosing
λ > 0 small enough such that

(λ− C1) +
β2

γ(γ − λ)
(C2 + C3) ≤ 0

5. Almost sure exponential stability could be obtained by
continuous semimartingale convergence theorem (see the following
slide).
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Continuous semimartingale convergence theorem

Let A(t),U(t) be two continuous Ft adapted increasing processes
on t ≥ 0 with A(0) = U(0) = 0 a.s. Let M(t) be a real-valued
continuous local martingale with M(0) = 0 a.s. Let ξ be a
nonnegative F0-measurable random variable. Assume that {X(t)}
is a nonnegative semimartingale with the Doob-Meyer
decomposition

X(t) = ξ + A(t)− U(t) + M(t), t ≥ 0.

If limi→∞ A(t) < ∞ a.s., then

lim
t→∞

X(t) < ∞ and lim
t→∞

U(t) < ∞, a.s.
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Sketch of the proof of Theorem 4

The idea is based on [Exponential stability of the exact solutions
and θ-EM approximations to neutral SDDEs with Markov
switching，J. Comput. Appl. Math., 2015, 285, 230-242.]

1. Define Fk := Xk − θhf(Xk,Zk). Prove that for 0 < C < C1, we
can choose sufficiently small h > 0 such that

|Fk+1|2 ≤ |Fk|2 − Ch|Fk|2 + (C2|Zk|2 + C3|Z̄k|2)h + Mk.
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Sketch of the proof of Theorem 4

2. Using the fact that

|Fk|2 ≥ |Xk|2 − θh(−C1|Xk|2 + C2|Zk|2 + C3|Z̄k|2)

and that

|Zk|2 ∨ |Z̄k|2 ≤
β2

γ
h

k−1∑
j=0

e−γ(n−j)h|Xj|2

3. We can choose A > 1 such that 1− Ch − A−h < 0, then

AkhE|Fk|2 ≤ E|F0|2.
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Sketch of the proof of Theorem 4

4. Then

AkhE|Xk|2 ≤
E|X0|2

1 + C1θh+
θh2β2(C2 + C3)

γ(1 + C1θh)

k−1∑
j=0

(Ae−γ)(k−j)hAjhE|Xj|2

5. Complete induction yields the required results.
6. Almost sure exponential stability could be obtained by discrete
semimartingale convergence theorem or by using Chebyshev’s
inequality and Borel-Cantelli lemma.
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5. An example

Consider the following scalar stochastic Volterra integro-differential
equation

dx(t) =
(
−6x(t)− x5(t) +

∫ t

0
e−(t−s)x(s)ds

)
dt

+

2 x3(t)
∫ t
0 e−2(t−s)x(s)ds

1 +
(∫ t

0 e−2(t−s)x(s)ds
)2 +

∫ t

0
e−2(t−s)x(s)ds

 dWt

(14)
with the initial value x0 = 1.
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It is clear that the coefficients f(x, y) = −(6x + x5 − y) and
g(x, y) = 2 x3y

(1+y2) + y satisfy the local Lipschitz condition (10).
(11) holds for G(t) = e−t and H(t) = e−2t with β = γ = 1. And f
satisfies one-sided Lipschitz condition (13).

Moreover, condition (12) holds for C1 = 11,C2 = 1,C3 = 8. And
C1 >

β2

γ2 (C2 + C3) holds with β = γ = 1.

Then by Theorem 3 and by Theorem 4, we know that the exact
solution to equation (1) is mean square exponentially stable.
Moreover, one can choose sufficiently small stepsize h such that the
θ-EM method (θ ∈ (12 , 1]) is also mean square exponentially stable.
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Thanks for your attention!

谢 谢 大 家！

兰光强 北京化工大学
Email: langq@mail.buct.edu.cn


